Metode Pengukuran Triangulasi

Triangulasi digunakan apabila daerah pengukuran mempunyai ukuran panjang dan lebar yang sama, maka dibuat jaring segitiga. Pada cara ini sudut yang diukur adalah sudut dalam tiap-tiap segitiga. Metode Triangulasi. Pengadaan kerangka dasar horizontal di Indonesia dimulai di pulau Jawa oleh Belanda pada tahun 1862. Titik-titik kerangka dasar horizontal buatan Belanda ini dikenal sebagai titik triangulasi, karena pengukurannya menggunakan cara triangulasi.

Hingga tahun 1936, pengadaan titik triangulasi oleh Belanda ini telah mencakup pulau Jawa dengan datum Gunung Genuk, pantai Barat Sumatra dengan datum Padang, Sumatra Selatan dengan datum Gunung Dempo, pantai Timur Sumatra dengan datum Serati, kepulauan Sunda Kecil, Bali dan Lombik dengan datum Gunung Genuk, pulau Bangka dengan datum Gunung Limpuh, Sulawesi dengan datum Moncong Lowe, kepulauan Riau dan Lingga dengan datum Gunung Limpuh dan Kalimantan Tenggara dengan datum Gunung Segara.

Posisi horizontal (X,Y) titik triangulasi dibuat dalam sistem proyeksi Mercator, sedangkan posisi horizontal peta topografi yang dibuat dengan ikatan dan pemeriksaan ke titik triangulasi dibuat dalam sistem proyeksi Polyeder. Titik triangulasi buatan Belanda tersebut dibuat berjenjang turun berulang, dari cakupan luas paling teliti dengan jarak antar titik 20-40 km hingga paling kasar pada cakupan 1-3 km.

Ketelitian posisi horizontal (x,y) titik triangulasi

Selain posisi horizontal (X Y) dalam sistem proyeksi Mercator, titik-titik triangulasi ini juga dilengkapi dengan informasi posisinya dalam sistem geografis (j,I) dan ketinggiannya terhadap muka air laut rata-rata yang ditentukan dengan cara trigonometris.

Triangulasi dapat diklasifikasikan sebagai berikut :
  • Primer
  • Sekunder
  • Tersier
 Bentuk geometri triangulasi terdapat tiga buah bentuk geometrik dasar triangulasi, yaitu :

  • Rangkaian segitiga yang sederhana cocok untuk pekerjaan-pekerjaan dengan orde rendah untuk ini dapat sedapat mungkin diusahakan sisi-sisi segitiga sama panjang.
  • Kuadrilateral merupakan bentuk yang terbaik untuk ketelitian tinggi, karena lebih banyak syarat yang dapat dibuat. Kuadrilateral tidak boleh panjang dan sempit.
  • Titik pusat terletak antara 2 titik yang terjauh dan sering di perlukan.

Komentar